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The asymptotic method of solving boundary-value problems of the theory of elasticity for anisotropic
strips and plates is used to solve coupled dynamic problems of thermoelasticity for plates, on the faces

of which the values of the temperature function and the values of the components of the displacement
vector or the conditions of the mixed problem of the theory of elasticity are specified. Recurrence formulae
are derived for determining the components of the displacement vector, the stress tensor and for the
temperature field variation function of the plate.
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The asymptotic method proposed earlier? turned out to be
effective for solving problems of the theory of elasticity both with
static!~7 and dynamic3-1! boundary conditions. Problems of ther-
moelasticity for anisotropic laminated plates and shells were solved
by this method3-7 on the assumption that the temperature field
variation function satisfies the heat-conduction equation.!? The
solution of coupled dynamic problems of thermoelasticity'® for
plates is urgent.

1. Formulation of the boundary-value problems and the
derivation of the resolvents

Consider a plate which, in a rectangular system of coordinates,
occupies the region

Q. ={x,y,zi-a<x<a,-b<y<b,-h<z<h,h<l=min{a,b}}

(see Fig. 1).
The change in temperature 6 = T — T and the components of the
displacement vector u = (uy,uUy,uz)

005y, ~h 1) = 07 (6, 7.0, w06y, ~h 1) = w06y, 0, j=xyz
(1.1)

are given on the surface z=—h, while on the opposite surface z=h,
the change in temperature

0(x,y, +h, 1) = 0" (x, y,1) (1.2)
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is given together with the components of the displacement vector

ui(x,y, +h, 1) = u;(x, »t), j=xy2 (1.3)

or with the components of the stress tensor

6,.( Y, h1) = 6L (x, 1), j=x¥2 (14)

or with one of the combinations of the following mixed conditions

u,(x,y,h,t) = u:(x, ¥ 1), G (xy, h,t) = o‘jz(x, 1), j=xYy
(1.5)

or

uj(-xv Y, h, t) u;(xa Ys t)a ] =X y; O'ZZ(X, Ys h7 t) = G:;(-L Y, t)

(1.6)

It is required to determine the stress-strain state of the plate
and the change in its temperature field, assuming the process to be
steady, so that the initial conditions are not specified. The bound-
ary conditions on the ends x=+a, y = +b of the plate are not given,
since an internal problem is being solved. To solve this problem
it is necessary to obtain the solution of the following system of
equations!3

2 G 0. _ 09 o
GViu, + I _ZVa—xdwu+X =y ax+pux 2%, Y,2)
Vze—le—n*ﬁdivu =P

which satisfy boundary conditions (1.1) and (1.2) and one of the
versions of conditions (1.3)-(1.6).
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Fig. 1. Versions a-d in the figure correspond to conditions (1.3)-(1.6).

Here
V2=.§2_+a_2+a_2 Y*=2Q*G(1+V)
ax> 3y’ o7 T-2v
Ty A* W
n* = ’Y*F‘ X = —E—’ P = F

G is the shear modulus, v is Poisson’s ratio, p is the density, X,
Y and Z are the components of the body forces, ¥ is the thermal
diffusivity, N* is the thermal conductivity, c; is the specific heat
capacity at constant strain, a* is the coefficient of linear expansion,
W* is the heat source specific density and Ty is the initial absolute
temperature.

We will rewrite the relation between the components of the
stress tensor, the displacement vector and the change in the tem-
perature in the form of the Duhamel-Neumann law!3

di %9 G(a“ +a )
—5ydivu-1*6, o, = ETRET (x,y,2)

(1.8)

Suppose the specified functions in boundary conditions
(1.1)-(1.6) and in Eq. (1.7) have the form

Ulx,y,2h 1) = US(x,p)sinot, U = {u; 0} j=xnz (19)

X(x,y,2,1) = Xi(x,y,2)sin0t (X,Y,Z, P) (1.10)

It is then more convenient to represent all the required quantities
in relations (1.7) and (1.8) in the form

Q(xa )’, 2, t) = Ql(x9 ,V» Z)Sinﬁ)t+Q2(x, ,V’ Z)COS(l)t (Q’e) (1.]1)

where Q is any of the components of the displacement tensor, the
stress tensor, and also the temperature field variation function.

Substituting expressions (1.10) and (1.11) into Eq. (1.7) and
changing to dimensionless coordinates and displacement using the
formulae

1 (112)

we obtain

~2 G 29,
GViu,+ v ag(Vl u) + 11X, = v = 3E g ph
EMup U XY, k=12, X, =Y,=0

52 G 10 ,¢ 108,
GVlw,(+l—_2—e a—C(Vl-uk)HZ, = yre! T — 7w’ ph’w,,
k=12

- B 2 B - P
Vie, +e 2%62%9 *on*h’(Ve - u,) = —IZY

6562— 72%91—8 on*h (VE u) =0
(113)
Here

~ 2 2 2 - 2 2 2
V%: az+a—2+a—2, V§=a—2+a—2+s'22—2

9&" on” d¢ 9g” on g
- du, dv, Jdw, du, ka _10w,
Vw) =g+ Sn e (YW TSt g

The system of equations (1.13) is singularly perturbed by the
geometric small parameter &. Its solution is obtained by matching
the solution of the internal problem with the solution of the prob-
lem for a boundary layer. It was proved in Refs 3, 7, 14, 15 that the
solution of the internal problem predominates at internal points
of the plate, beginning at a distance of (1.5-2)h from its side sur-
face. The solution of the internal problem on the side surface of the
plate in general ceases to predominate in view of the fact that here
the effect of the boundary-layer solution is greater, and it attenu-
ates exponentially in the direction of the inward normal to the side
surface.

The solution of the internal problem will be sought in the form
of the asymptotic expansion

S
Ouxy.2) = Y e°0PE 0. k=12

(1.14)

where Qy is any of the unknown components of the displacement
vector u;, the stress tensor oj; and also the change in the tempera-
ture 0, and xq is the asymptotic order of the corresponding quantity,
where for all the displacements x, =0, for all the stresses xqs=—1,
and for the temperature field variation function xg=—1.1"7 These
asymptotic orders were introduced for the first time in Refs 1 and 2
for boundary-value problems of the theory of strips and plates with
kinematic and mixed boundary conditions, similar to conditions
(1.1)-(1.6).

We will represent the specified body forces and the normal-
ized specific density of the heat source in the form of the following
asymptotic expansions

Xy(x, y,2) = 211 IXE N O (%, Y, 2),

21‘2 PYEN D

Pi(x,y,2) =
(1.15)

This indicates that the body forces and the heat source can affect
the stress-strain state, beginning with the first step of the iteration
process, if their asymptotic orders are £~2 and &3 respectively.
Substituting expressions (1.14) and (1.15) into relations (1.13) and
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equating the coefficients of &% (s=0,1,2,...,S) on the left and right
sides of the equations, we obtain a non-contradictory system of
second-order differential equations with constant coefficients in
the unknown expansion coefficients (1.14). As a result, we obtain
the system of resolvents in the form

’u) )
acz +Y’uy) = Ry (w0
(s—1) 2 (Y 1)
R = _Lyw, 7*98; Iw
uk G* TG 9 1-2v agaz;
_2(1_\/)3214}(:72) 1 az (s-2)

2 T 1-2v aaan

1-2v Bn

EMupve X, Y k=12 X =719 =0

2 (s) ()
J Wi (s) [3* ’ R(;)

ar? ac wk

: (1.16)
RO - 1-2v o 1 (82 en azvf’”)

N T ) R U R (N2 T 4

1=9v 32 (s-2) +82w§: 2)}
ae? an’

T2(1-v)
oo P N

: (s) (s)
8C2 +(=1)" g0 +r 3 = Rg;

azei\--z) P e(s 2.

(s) (-1 (s— 1)
§ P 3k aLl a
R == 8umh - e Tk e k)

o€ E)n ae? m:
k=1,2,8,,=1,8,=0
(117)
Here
Y=whjg, P—Yz(]zv) q=w7”,
r= um*hz, B* = o* +y

Taking relations (1.11), (1.12) and (1.14) into account we write
the components of the stress tensor (1.8) in the form

(s)
(5) 2vG oW, w«a(®) (s)
= _— +R )
xxk 1-2v ac Y el xxk (x’ ))
(s=-1) (s=1)
) _ 2(1-v)Gou 2 G 9 e
Rxxk = 1-2v aé —Jv an (X, s é’ n; u, U)
(s)
¢ _ 2(1-v)GOwg (), p(®)
ok = “Toav ot Y 0+ R
- 2o 0 20
@k T 1-2v0 9% an
® _ g au“ b 31)(T b (s) _G(au,(\:) aw;f_l))
Gka_ ( an aé )’ xzk = ac aa
s _G(au(” Gl 1)) k=1,2
SRS 3’1 ’ (118)

Hence, it is necessary to obtain the solution of system of equa-
tions (1.16), (1.17) which satisfies one of the combinations of
boundary conditions (1.1)-(1.6) taking representation (1.11) into
account.

2. Solutions of the boundary-value problems

System (1.16) consists of four equations, which are independent
in a first approximation, i.e., they can be coupled only after the first
step of the iteration. We will call them quasi-coupled equations.
Their general solutions have the form
um = M(S) sinyC + fok)cosyC + Jffk)(C),

I8 = -jR‘”(r) siny(§ - )dr(u, v); k= (1,2)
(2.1)

System (1.17) consists of four equations, related to the first step
of the iteration. Its solution has the form

8

A,
W= 3 V4,0 + 180,

n=1
$ e
0 = 3 W ag (e + TSN k = 1,2
n=1 (22)

Here C,(f) are functions of integration, A, (n=1,2,.. .,
of the equation

8) are the roots

A4 p A4 p —BEA —B*A
2
—rA 0 -q A -0
0 oAl q

0 AM+p 0 —B*A (2.3)

which have the form

Ay = £ (p + (<1)'ic) £ p? =+ 2(-1)'ip(c - 2913
n=12..,8, = g+rp* (2.4)
(all eight possible combinations of signs must be taken into

account), Ay, Agi (k=1, 2) are the cofactors of the elements of the
first row of determinant (2.3)

= O+ p) M+ g -AgrB*, AL, = -Airp*

Agr(X,) =

Awl()‘n)

Agi(A) = 7»,3,rc+?»,,pqr, ~7»3r(7»,2,+p) (2.5)
and ](S)(E) ](5)(5)(k =1, 2) are particular solutions of the system
of coupled mhomogeneous (with non-zero right-hand side) equa-
tions (1.17), which have the form

8
IS0 = Y CFOOALO)E T (n,0), k= 1,2
n=1 (26)

where C,’;(S)(“;‘) are the elements of the column matrices

*(s)

col[C] )

*(:)

(), C; (), .

RY)RY) RS0, ..., 01d¢

(C)] = J-”au”éSXSCOI[R(xl)’

amn = >\’na(m+4)n’ m = 1’ 2’ 3’ 4
s A
Ak +ayn = Awk(}"n)e s Akv6n = Aek(l")e ;
k=12, n=12..8 2.7)
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The general solutions (2.1) and (2.2
integration

) contain 16 functions of

MO N vy k=12, ¢, n=1,2..8

which are defined uniquely from the boundary conditions, taking
transformations (1.9) into account.

By satisfying the boundary conditions (1.1
eight functions of integration

)-(1.3), we obtain

2M(ksmy = u+(s)—L£S,(), 2N(kcosy = uk +Lffk)
DTG =-1) (uv),

k=12 5" =vu"=0

Ly = w4+ (¢ =

+(s)

uy ==, u, =0, s>0 (x,y,u,v), sin2y#0

(2.8)

We obtain the remaining eight functions of integration from
relations (1.1)-(1.3) and (2.2)

col[C, €3, ..., €1 = by gcol (F1, F1, F3©, FYf
F;(S), F;(s)’ F:(:), F;(: ]

Ay -
bak_3yn = Ayde™, bsg_2yn = Ah)e

~7L"
bakyn = Agi(he

Ay M,
bk yn = Aghye "

k=12, n=12,..,8
Fali = 8 TG =21, F5” = 8,8 - Jg(L = £1),
§,=1, 8,=0
ui
1= =k Wi =00 >0, detfbyg, %0

(2.9)

Hence, the recurrence formulae (2.1)-(2.9), together with rela-
tions (1.14), (1.9)-(1.11) and (1.8) enable us to calculate the
components of the displacement vector, the stress tensor and
the temperature field inside the plate with any asymptotic accu-
racy O(e’), when we are given conditions (1.1)-(1.3) on the
faces.

By satisfying boundary conditions (1.1), (1.2) and (1.4), taking
relations (1.19), (1.11) and (1.18) into account, we obtain

(s)

M) cos2y = IS cosy +1

k smy,

N(kCOSZY I( cosy+1xzksmy k=12

K +(s s aW(S Y
i = [oi- (o a5 )|,

12 = w® =13 =-1

(& M: x, y; u, )
0) (s)
Gzz(l = Gtzl’ xszl - 0 s>0 (x, ,V),
+(s) _ () =(s) _ () _
Ouy =0y =y =V, =0 (2.10)

and we write the values of the remaining functions of integration
in the form of a matrix

col[C}”, €5, ... €1 = |dyj| s g0l (@7, @,
‘D(;), (D(S) CD;(S), @;(S)’ (D;r(S)’ (Dg(-f)]

4 _(2(1-V)G
Qk-n =\ "1 oy

A}LH
d(Zk)n = A(A)e

A
Awk(}"n) - Y*Aek(xn))e ”,

A
d(2k+3 = Age(A, )3 > d(2k+4)n = Agi(A,)e

(s) (s) (S) (s) —(s) (Y)
Dy = 81k6+zl\ ~Joa(E=1), @y = 8y ~ T, (E=-1)

O = 8,07 - Jgl(C =51, 8= 1. 8, =0

) _2(1=-v)G 9 ,5 % 700 ) -

2k T U oy acj"/‘(C) V¥ (O + Ry k= 1,2

ol = oL ol =0. 520, ol =uy’ =0

- u, (s

u =g =00 s>00 k= 12, det]dy, %0

(2.11)

Oor mixe oundary conditions (1.1), (1.2) an .5) the func-
F ixed bound diti 1.1), (1.2) and (1.5) the fi

tions of integration are given by formulae (2.9) and (2.10), while for
conditions (1.1), (1.2) and (1.6) they are given by formulae (2.8) and
(2.11).

The above boundary-value problems have unique solutions
when
sin2y # 0,

cos2y#0, det|bs,s#0, det|d

UHSXS:/:O (2.12)

If at least one of these conditions is not satisfied, thermal-wave
resonance occurs. Here, the principal values which lead to reso-
nance of the frequencies of natural vibrations

o, =[G _M[Q
o 2hNpT T 4hWp (2.13)

and are determined from the equations sin2y =0, cos2y =0, give
rise to resonance of the shear vibrations (2.1) with boundary
conditions (1.1)-(1.3) and (1.1), (1.2), (1.4) respectively. These res-
onance frequencies are independent of the thermal coefficients of
the plate material. At the same time, the principal values of the
resonance frequencies, determined by the dispersion equations
det||bjjl|sx8 =0, det||d;jl|gxg =0, are closely related to the thermal
effects immediately from the first step of the iteration; they can
be determined only when the specific physical-mechanical con-
stants of the plate are taken into account. Note that the recurrence
formulae (1.4), (1.18) and (2.1)-(2.11) derived enable one to obtain
analytical solutions of the boundary-value problems in question
with any asymptotic accuracy using a computer in a few minutes.
The solutions are obtained with limitations (1.9)-(1.11), imposed on
the boundary conditions (1.1)-(1.6) and on the functions specified
in Eq. (1.7).

These limitations can be avoided by replacing all the functions
specified in relations (1.1)-(1.6) and (1.7) by Fourier transforms:

0*(x,y,2,1) = J%ij(x, Y, Z, ®) sinwtdw
0

Qf(x, %) = ﬁJQi(x, y, Z, t) sinwtdt
0

(0%, X,Y,Z,P; 01, X, Yy, Z}, P))
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while the unknown quantities (the components of the displace-
ment vector, and also the temperature field variation function) can
be sought in the form

Q(x,y,z2,t) = J%j[Ql(x, ¥, 2, ®)sin®z + O, (x, ¥, z, ®) cos Wt ]dw
0

These representations maintain in force all the formulae derived
for the transforms of the required quantities. After solving the
boundary-value problems it is necessary to revert to the originals
of the required quantities.

Hence, the asymptotic method, used previously in Ref. 1-11 to
solve non-classical boundary-value problems for anisotropic lami-
nated plates and shells, can also be used to solve coupled dynamic
problems of thermoelasticity, by first representing the unknown
quantities by their Fourier transforms. The proposed asymptotic
form and algorithm also enable one to solve coupled dynamic prob-
lems of thermoelasticity for anisotropic laminated non-uniform
shells and plates of constant and variable thickness using the
approach described earlier. Hence, the combination of the asymp-
totic method with the integral-transformation method extends the
class of problems which can be effectively solved by the asymptotic
method.
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